

P Value

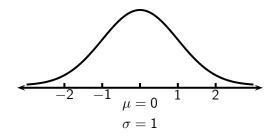
with

Z Distribution

What is **P Value**?

Assuming H_0 is valid, the p-value is is the probability of getting

a value of the Computed Test Statistics that is at least

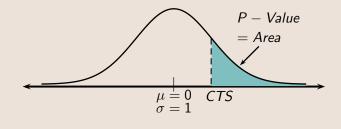

as extreme as the one representing the sample data.

What does **P Value** provide?

The p-value provides the smallest level of significance for which the null hypothesis H_0 would be rejected and the alternative hypothesis H_1 would be supported.

What is **Z Distribution**?

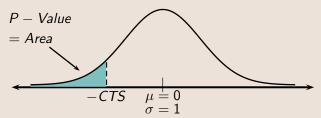
It is a normal probability distribution with $\mu = 0$ and $\sigma = 1$. The total area under its density curve is equal to 1. The density curve is symmetric and bell-shaped.


P Value

How does **P Value** look on the normal curve?

Solution:

P-Value is the area of the tail marked by CTS. If it is Two-Tail Test, then multiply that area by 2.


• Right-Tail Test (Positive CTS):

P Value

Solution Continued:

• Left-Tail Test (Negative CTS):

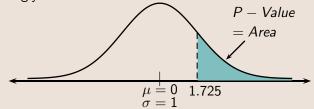
• Two-Tail Test

Draw the bell curve, then

- Shade the right tail if CTS is positive.
- Shade the left tail if CTS is negative.
- P-Value is twice such shaded area.

P Value & CTS Z:

Testing Type	TI Command
Right-Tail Test	normalcdf(CTS, E99, 0, 1)
Left-Tail Test	normalcdf(-E99, -CTS, 0, 1)
Two-Tail Test	$2 \cdot normalcdf(CTS, E99, 0, 1)$
	$2 \cdot \operatorname{normalcdf}(-E99, -CTS, 0, 1)$

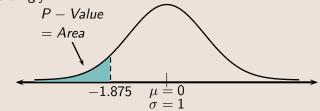

Example:

Find the corresponding P-Value for a Right-Tail Test with CTS z = 1.725. Round to 3-decimal places.

P Value

Solution:

We start by drawing the bell curve, then shade and label accordingly.


Now we can use the TI command, $P - Value = normalcdf(1.725, E99, 0, 1) \approx 0.042.$

Example:

Find the corresponding P-Value for a Left-Tail Test with CTS z = -1.875. Round to 3-decimal places.

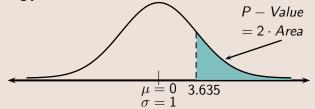
Solution:

We start by drawing the bell curve, then shade and label accordingly.

Now we can use the TI command,

 $P - Value = normalcdf(-E99, -1.875, 0, 1) \approx 0.030.$

P Value


Example:

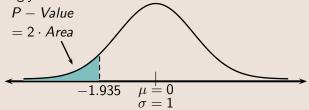
Find the corresponding P-Value for a Two-Tail Test with CTS z = 3.635.

P Value

Solution:

We start by drawing the bell curve, then shade and label accordingly.

Now we can use the TI command,


 $P - Value = 2 \cdot normalcdf(3.635, E99, 0, 1) \approx 2.8 \times 10^{-4}.$

Example:

Find the corresponding P-Value for a Two-Tail Test with CTS z = -1.935. Round to 3-decimal places.

Solution:

We start by drawing the bell curve, then shade and label accordingly.

Now we can use the TI command,

 $P - Value = 2 \cdot normalcdf(-E99, -1.935, 0, 1) \approx 0.053.$

P Value